
CONTENTS

alex-levesque.com

CMPE 212 — Introduction to Computer
Science II
Winter 2026

Based on lectures by S. Mohammad – Queen’s University

Notes written by Alex Lévesque

These notes are my own interpretations of the course material and they are not endorsed by the lecturers.

Feel free to reach out if you point out any errors.

Contents

1 Preface 3

2 Assembly Guide 4
2.1 Data Movement & Memory Access . 4
2.2 Arithmetic Operations . 4
2.3 Control Flow (Branching) . 5
2.4 Subroutines (Functions) . 5

3 Contrasting Between C and Java 7
3.1 Primitivity and Variables . 7

4 Basic Structure of Computers 8

5 Console Input and Output 10

6 Arrays and Loops 11

7 Instruction Set Architecture 13
7.1 Memory Organization . 13

8 Defining Classes 15
8.1 Methods . 15
8.2 Class . 15
8.3 Methods and Java.lang . 17
8.4 Constructors . 18
8.5 Memory . 20

9 Inheritance and Encapsulation 21

1

http://alex-levesque.com

CONTENTS

9.1 Inheritance . 21
9.1.1 Derived Classes . 21
9.1.2 Overriding a Method . 22

10 Polymorphism 24

11 Exception Handling 25

2

1 PREFACE

1 Preface
Grading Scheme:

Textbook:

Comments:

•

3

2 ASSEMBLY GUIDE

2 Assembly Guide
In Nios II, every instruction is 32 bits wide. Since memory addresses are assigned to
individual bytes (8 bits), we know that each instruction occupies a 4-byte block. Therefore,
in a routine, the starting address of the next instruction must be exactly 4 bytes higher
than the previous one.

In register transfer notation, use [. . .] to denote contents of a location. Use ← to denote
transfer to a destination. Example: R2← [LOC]. We can also do R4← [R2] + [R3]

2.1 Data Movement & Memory Access
These instructions are used to move data between registers or between registers and
memory

mov (move register): mov dest., src.

• Definition: copies the contents of one register into another register
• Purpose: Used when you need to duplicate a value that is currently in a register to

use it elsewhere without modifying the original

movi (move immediate): mov dest., IMM16

• Definition: Loads a 16-bit constant (immediate) value into a register. The value is
sign-extended to 32 bits.

• Purpose: Used to initialize a register with a small number (like 0, 1, or small offsets)

movia (move immediate address): mov dest., label/32-bit address

• Definition: A macro (pseudo-instruction) that loads a full 32-bit value (typically a
memory address) into a register

• Purpose: Since standard instructions can only handle 16-bit numbers at a time,
movia is essential for loading the addresses of labels so the program knows where
data is located in memory

ldw (load word): ldw dest., byte_offset(base address)

• Definition: Reads a 32-bit word from a specific memory address and loads it into a
destination register

• Purpose: Used to retrieve data stored in RAM so the processor can operate on it

stw (store word): stw source, byte_offset(base address

• Definition: Writes the 32-bit value currently in a register to a specific memory
address

• Purpose: Used to save the results of calculations back into RAM for later use

Byte offsets are used to provide a flexible and efficient way to access specific memory
locations relative to a known starting point

2.2 Arithmetic Operations
These instructions perform mathematical calculations.

add (add): add dest., src., src.

4

2 ASSEMBLY GUIDE

• Definition: adds the contents of two source registers together and stores the result
in a destination register

• Purpose: Used for standard addition of variables

addi (add immediate): addi dest., src., IMM16

• Definition: adds the value of a source and a 16-bit constant, storing the result in
the destination

• Purpose: commonly used to increment counters or move points to the next item in
a list

subi (subtract immediate): subi dest., src., IMM16

• Definition: Subtracts a 16-bit constant value from source and stores the result in
the destination

• Purpose: used to decrement counters or adjust values downwards by a fixed amount

2.3 Control Flow (Branching)
These instructions change the order in which the code executes (loops and if-statements).
Branch instruction causes repetition of body. Many branches are conditional, as seen
below.

br (branch): br LABEL

• Definition: unconditionally jumps to the instruction located at LABEL
• Purpose: used to force a loop to repeat or to skip over a section of code entirely

beq (branch if equal): beq src., src., LABEL

• Definition: compares registers; if they are equal, the program jumps to LABEL
• Purpose: often used to check loop termination conditions

bne (branch if not equal): bne src., src., LABEL

bge, ble, bgt, blt (branch if ≥,≤, >, <): opcode src., src., LABEL

• Definition: compares registers; if they are ≥,≤, >, <, the program jumps to LABEL
• Purpose: often used to check loop termination conditions

2.4 Subroutines (Functions)
These instructions are used to call and return from functions

call (call subroutine): call LABEL

• Definition: jumps to LABEL and automatically saves the address of the next
instruction into the return address register r31

• Purpose: allows the program to execute a separate block of code and remember
where to come back to when it’s done

ret (return):

• Definition: jumps to the address stored in the return address register
• Purpose: used at the end of function to send the processor back to the point in the

main code immediately following the call instructions

5

2 ASSEMBLY GUIDE

6

3 CONTRASTING BETWEEN C AND JAVA

3 Contrasting Between C and Java

3.1 Primitivity and Variables
Strings: Java has a separate type that represents strings.

String s = "Hello"

Instead of using strcat in C to concatenate strings, we can concatenate strings using the
+ operator.

Instead of doing string1 == string2, we need to do string1.equals(string2). It
returns a boolean.

To compare the two, we use .compareTo. A negative return value represents < and a
positive value for >.

In C, variables have a type, it is declared along with the variable name, it cannot be
changed, and the variable can hold values only of the declared type. This is the same in
java:

String s = "Hello";
int t = 123;
int[] anArray = new int[3]; // new allocates memory for an object on the heap and returns a reference to it
anArray[0] = 0;
anArray[1] = 1;

double is the usual choice for routine calculations involving floating-point values

In C, integer types have minimum sizes, not fixed sizes. In Java, integer types are also all
signed (except char) and sizes are fixed.

Ulp: To handle numerical precision mistakes from float and double, we can use ulp(...)
to find the difference between x and the next representable floating-point number greater
than x. Therefore, ulp is commonly used to reason about floating-point error bounds.

Boolean: In Java, we have a boolean type that can only be true or false.

In regards to integer overflow, adding 1 past the integer maximum values wraps it around
to the minimum value, causing massive real-world failures.

7

4 BASIC STRUCTURE OF COMPUTERS

4 Basic Structure of Computers
Definition: Computer architecture is the specification of a set of instructions and
behaviour of hardware units

Functional Units: Computers consist of 5 basic units: input, memory, arithmetic and
logic, output, and control. The interconnection network supports transfer of information
between units. The processor includes arithmetic and logic with control. The I/O
System includes input and output units together.

Input: Accepts coded information (in binary) for processing. Ex: mouse, keyboard, etc.

Memory: Stores programs (instruction lists) and data. Ex: RAM, SSD/HDD, cache

ALU: Performs arithmetic (+,−, ·, /) and logic (∧,∨,¬). Ex: high-speed registers for
holding operands

Output: Presents processed results. Ex: displays, printers, and audio devices

Control: Coordinates all other units by sending timing and state signals. Ex: control
circuits and control lines

8

4 BASIC STRUCTURE OF COMPUTERS

How They Interact

1. Instruction Fetching: The Control Unit uses the Program Counter (PC) to
find the address of the next instruction in Memory. This instruction is moved into
the Instruction Register (IR) within the processor. During execution of each
instruction, PC register is incremented by 4.

2. Decoding: The Control Unit interprets (decodes) the instruction in the IR to
determine what action is required.

3. Data Transfer: Depending on the instruction, data may be moved from an Input
Unit to Memory, or from Memory to Processor Registers (Load instruction).

4. Processing: If the instruction involves math or logic, the Control Unit directs the
ALU to perform the operation using operands stored in registers.

5. Storing and Outputting: The result of a calculation is either kept in a register
or written back to Memory (Store instruction). Finally, the Output Unit may
transfer these results to a user or external device.

Instructions Running Cycle:

1. Fetch: The CPU fetches the instructions from memory. It uses the PC to know the
memory address of the next instruction which is then loaded into the IR

2. Execute: The CPU carries out what the instruction says, could be ALU, jump/branch,
moving data, etc.

9

5 CONSOLE INPUT AND OUTPUT

5 Console Input and Output
Printing: In C, we use printf but must differentiate between types. In Java, we use print
to print, and printIn to print and go to the next line.

int num = 212;
String subj = "CMPE";
System.out.print(subj);
System.out.print(" ");
System.out.printIn(num);

// or use String concatenation
System.out.printIn(subj + " " + num);

Scanner: importing java.util.Scanner and using the an object of the class Scanner
enables reading data that the user types on the keyboard.

10

6 ARRAYS AND LOOPS

6 Arrays and Loops
Declaration:

int [] data = new int[10];

// or

int[] data;
data = new int[10];

To fill an existing array so that all elements have the same value, use the method
Arrays.fill

import java.util.Arrays;
public class Lecture4 {

public static void main(String[] args) {
double[] someDbls = new double[10];
System.out.println(Arrays.toString(someDbls));
// fill array with 1.0
Arrays.fill(someDbls, 1.0);
System.out.println(Arrays.toString(someDbls));

}
}

A regular for loop has four main parts:

1. an initialization expression
2. a termination condition
3. an update expression
4. a loop body

Syntax:

for (initialization; boolean_expression; update) {
block_of_code;

}

Often, you will want to visit every element in a collection, not just a part. We can use a
for each loop:

for (type variable: collection){
// statements

}

Other keywords include continue and/or break statement to interrupt the execution of
a loop, where the former returns control to the top of the loop and the latter transfers
control to the first statement after the loop

Similarly to C, we can have n−dimensional arrays:

11

6 ARRAYS AND LOOPS

//single

int[] testArray;
testArray = new int[10];

//multi

int[][] twoDArray;
twoDArray = new int[10][];

We can Alias two objects, where they then point to the same data memory and changes
to this data is represented in both aliases:

int[] first = {1,2,3,4,5};
int[] second = {10,20,30,40,50,60,70};
second = first;

In this case, the last two elements of second array are automatically sent to Garbage
Collection, because we have moved outside of their scope.

MAKE NOTES ABOUT PASSING PARAMETERS AND ARRAYS BY REFERENCE

12

7 INSTRUCTION SET ARCHITECTURE

7 Instruction Set Architecture
A common word length is 32 bits. Numbers 0 to 2k−1 are used as addresses for successive
locations in the memory. Byte size is always 8 bits, but word length may range from 16
to 64 bits.

Byte locations have addresses 0, 1, 2, . . ., and word locations have addresses 0, 4, 8, We
provide a byte-addressable memory that assigns an address to each byte. We have two
ways to assign byte address across words.

Big-endian: Assigns lower addresses to more significant (leftmost) bytes of word

Little-endian: Uses opposite order.

7.1 Memory Organization
Hierarchy and Storage Types

Memory is organized into different levels to balance speed, capacity, and cost.

Primary Memory: This is fast, electronic memory composed of semiconductor storage
cells. It is essential for storing programs and data currently in use.

Cache Memory: A smaller, faster electronic memory located on the same chip as the
processor. It holds copies of instructions and data from the main memory that were
recently used or are likely to be used soon, significantly speeding up access.

Secondary Storage: This provides large-capacity storage that retains information even
when the power if off. While it is less expensive per bit, i tis generally slower than primary
memory and has traditionally been based on magnetic or optical devices, though it now
includes flash memory.

13

7 INSTRUCTION SET ARCHITECTURE

Physical and Logical Organization

The physical structure of memory dictates how the processor interacts with it.

• Binary Representation: Information is stored in bits
• Words: Bits are grouped into multi-bit “words” (typically 32 bits) to allow the

processor to access multiple bits simultaneously for efficiency
• Addressing: Each word location has a unique address, numbered consecutively

starting at 0
• Random Access Memory: Memory is organized so that any location can be accessed

in a fixed, short amount of time, regardless of where the data is physically located

14

8 DEFINING CLASSES

8 Defining Classes
A class is a template that defines a type. An object is a concrete instance of a class. A
method is a function defined within a class that describes behavior.

8.1 Methods
In Java, a method is a block of code that is associated with an object or defined
inside a class. Every “function” in Java is actually a method because it must reside within
a class definition.

Example: In C, the focus is on the function, and the data is separate from the logic that
processes it.

In Java, we encapsulate the data and the logic into a Class. The “function” becomes a
method belonging to that class.

public class Circle {
// A Method (specifically a static method for utility)
public static double calculateArea(double radius) {

return Math.PI * radius * radius;
}

public static void main(String[] args) {
double r = 5.0;
// Calling the method through its Class name
double area = Circle.calculateArea(r);
System.out.println("Area: " + area);

}
}

Definition: In Object-Oriented Programming, we use Encapsulation to bundle data and
the methods that operate on that data into a single unit called a class.

8.2 Class
Definition: A class is a formal template used to create objects and define their data
types and behaviours.

// template

public class ShowStructure {
// instance variables or "attributes" (fields) here
// methods here

} // end class ShowStructure

// method syntax
[private|public] [static] [final] returnType methodName ([parameterList]) {...}

15

8 DEFINING CLASSES

Fields declared in a class defines their “scope”. We can control their privacy and the way
they are stored in memory using public/private/protected and static

// field syntax
[private|public] [static] [final] type attributeName [= literalValue];

// field examples
public static double aVar;
public static int aNum = 100;
private static String hello = "Hello";

Definition: The public access modifier on a top-level class means that the class is visible
to all other classes.

Definition: The static modifier on a method means that the method is associated with
its class.

In Java, the return value must be compatible with the declared return type of the method.

A void method has no return statement, but an empty return statement is legal.

Example:

public void printHelloName (String yourName) {
System.out.printIn("Hello " + yourName);

} // end printHelloName

You can use the ellipsis operator (. . .) to create a parameter that can take any number of
arguments of that type.

// example
public void seeBling (Bling... blingers) {// code}

Within seeBling, you get at the individual arguments of type Bling by pretending that
blingers is an array

16

8 DEFINING CLASSES

Full Example:

public class Simple {
public static int aNum = 100;
public static int sumNums(int num1, int num2) {

return num1 + num2;
}
public static void main(String[] args) {

int anotherNum = 200;
System.out.println(sumNums(aNum, anotherNum));

}
}

To reference a method within a class, we must import the class, unlike #include in C

8.3 Methods and Java.lang
A method is written to avoid repeating code. They should be short, do only one thing,
and do it well. A code in a method should be at the same level of abstraction and use
less than three parameters wherever possible.

Java.lang is a core Java package that contains the fundamental classes required for almost
any Java program. Conceptually, it sits at the lowest level of abstraction for everyday
Java programming.

Fundamental Classes Function
String The root superclass of all classes in Java
Integer, Double, Boolean Wrapper classes for object representations of

primitives
Math Common math functions
System Standard I/O, environment access, garbage

collection hooks
Thread, Runnable Basic concurrency primitives
Throwable, Exception,
RuntimeException, Error

The exception hierarchy

StringTokenizer Parsing strings to pieces, i.e. “tokens”

// example StringTokenizer
String aString = "This is a String - Wow!";
StringTokenizer st = new StringTokenizer(aString);
System.out.println("The String has " +

st.countTokens() + " tokens.");
System.out.println("\nThe tokens are:");
while (st.hasMoreTokens()) {

System.out.println(st.nextToken());
} // end while

17

8 DEFINING CLASSES

Method Overloading: Overloading is when a method name is used more than once in
method declarations within the same class. The rule is that no two methods with the
same name within a class can have the same number and/or types of parameters in the
method declarations.

Method Overriding: Where a subclass provides its own implementation of a pre-defined
method from the super class.

8.4 Constructors
Super: A derived class inherits all instance variables from its base class, but it cannot
access private base class variables directly. To initialize this inherited data, a derived class
constructor uses the super keyword to call a constructor of the base class

The syntax is super(Argument_List); and must always be the first action taken in
a derived class constructor definition. You cannot use a base class name to call its
constructor.

This: When defining multiple constructors in the same class (overloading), it is often
convenient for one constructor to call another. This is done using the keyword this.
Using this(name, date) inside a constructor to trigger a different constructor in the
same file is a good example.

Example:

Base:

18

8 DEFINING CLASSES

public class Employee {
private String name;
private Date hireDate;

// No-argument constructor
public Employee() {

name = "No name";
hireDate = new Date("January", 1, 1000); // Placeholder

}

// Parameterized constructor
public Employee(String theName, Date theDate) {

name = theName;
hireDate = new Date(theDate); // Uses Date's copy constructor

}

// Base class copy constructor
public Employee(Employee originalObject) {

name = originalObject.name;
hireDate = new Date(originalObject.hireDate);

}
// ... Accessors/Mutators/toString ...

}

Derived:

19

8 DEFINING CLASSES

public class HourlyEmployee extends Employee {
private double wageRate;
private double hours;

// A. Using 'this' to call another constructor in the SAME class
public HourlyEmployee() {

// Calls the constructor below (C) with default values
this("No name", new Date("January", 1, 1000), 0, 0);

}

// B. Derived Class Copy Constructor using 'super'
public HourlyEmployee(HourlyEmployee originalObject) {

// Calls the base class (Employee) copy constructor to set name/hireDate
super(originalObject);

// Sets the specific instance variables for this derived class
wageRate = originalObject.wageRate;
hours = originalObject.hours;

}

// C. Using 'super' to call a BASE class constructor
public HourlyEmployee(String theName, Date theDate,

double theWageRate, double theHours) {
// Must be the FIRST action: initializes inherited name and hireDate
super(theName, theDate);

// Initializes derived-only variables
wageRate = theWageRate;
hours = theHours;

}
}

8.5 Memory
Memory: Java has no mechanism for accessing memory directly. Therefore, there are no
pointer types.

Java programmers generally are not concerned with allocating memory for objects. Except
for arrays where the size of the array has to be specified. De-allocating memory sued by
objects that are no longer needed is done automatically by the garbage collector.

Reference Type: Any type that begins with a capital letter is a reference type, like
String, List, etc. Classes are user-defined reference types.

Primitive Type: Any type that begins with a lowercase letter is a primitive type.
boolean, byte, char, short, int, long, float, double. All primitive types occupy a defined
fixed amount of memory.

20

9 INHERITANCE AND ENCAPSULATION

9 Inheritance and Encapsulation

9.1 Inheritance
Definition: One of the main techniques of OOP is inheritance, which means that a very
general form of a class can be defined and compiled. Later, more specialized versions of
that class may be defined by starting with predefined definition and adding variables and
methods. The specialized classes are said to inherit the methods of the predefined class.

For example, we can create a class hierarchy, starting with the class Employee and
continuing with derived classes for different kinds of employees:

9.1.1 Derived Classes

A derived class, or a subclass, is built upon a base class, or a superclass.

Adding the final modifier to the definition of a method/class indicates that it may not
be redefined in a derived class.

21

9 INHERITANCE AND ENCAPSULATION

// Base class
class Animal {

void eat() {
System.out.println("This animal eats food.");

}
}

// Derived class
class Dog extends Animal {

void bark() {
System.out.println("The dog barks.");

}
}

// Main class to test
public class Main {

public static void main(String[] args) {
Dog myDog = new Dog(); // Create an object of the derived class
myDog.eat(); // Inherited method from Animal
myDog.bark(); // Method of Dog

}
}

Definition: A base class is often called the parent class. A derived class is then called
a child class, therefore we have ancestor classes and descendent classes.

9.1.2 Overriding a Method

If a derived class requires a different definition for an inherited method, the method may
be redefined in the derived class. This is called overriding the method definition:

22

9 INHERITANCE AND ENCAPSULATION

// Base class
class Animal {

void sound() {
System.out.println("This animal makes a sound.");

}
}

// Derived class
class Dog extends Animal {

// Overriding the sound() method
@Override
void sound() {

System.out.println("The dog barks.");
}

}

// Main class
public class Main {

public static void main(String[] args) {
Animal myAnimal = new Animal();
myAnimal.sound(); // Calls Animal's method

Dog myDog = new Dog();
myDog.sound(); // Calls overridden method in Dog

}
}

23

10 POLYMORPHISM

10 Polymorphism

24

11 EXCEPTION HANDLING

11 Exception Handling
Exception Object: If a method throws an exception, then that method is immediately
halted and there is no need for any return value, even if the method is non-void. The
exception does not do anything about an error or a problem, but it stops the program.

Try/Catch: We use a try/catch block for an exception object.

try {
// block of statements that might generate an exception

} catch (exception_type identifier) {
// block of statements

} [catch (exception_type identifier) {
// block of statements

...
}] [finally {

// block of statements
}]

25

	Preface
	Assembly Guide
	Data Movement & Memory Access
	Arithmetic Operations
	Control Flow (Branching)
	Subroutines (Functions)

	Contrasting Between C and Java
	Primitivity and Variables

	Basic Structure of Computers
	Console Input and Output
	Arrays and Loops
	Instruction Set Architecture
	Memory Organization

	Defining Classes
	Methods
	Class
	Methods and Java.lang
	Constructors
	Memory

	Inheritance and Encapsulation
	Inheritance
	Derived Classes
	Overriding a Method

	Polymorphism
	Exception Handling

